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Supplementary Methods 

 

Kronecker regularized least-squares method 

Here, we describe in detail an algorithm that we refer to as the Kronecker regularized least-squares 

(KronRLS; Pahikkala 2010; 2013). First, we briefly describe the ordinary RLS method (Poggio and 

Smale, 2003), also known as the kernel ridge regression (Saunders et al., 1998) or the least-squares 

support vector machine (Suykens et al., 2002). KronRLS is a special case of the ordinary RLS 

method (Pahikkala et al. 2012). 

 

Let Ξ be the space of inputs, which can, in practice, be any set of arbitrary type of objects, and let 

X   be a set of m inputs drawn from Ξ according to some unknown probability distribution. 

Further, we assume that each input xi is assigned a real-valued label  *

i i iy f x e  , where f
*
 is an 

unknown function and ei is a noise term that is independent of xi. Following the standard notations 

for kernel learning methods, we formulate the problem of learning a prediction function       

from the labeled training set as finding a minimizer of the following objective function involving a 

training error and penalty terms: 
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where 
k

f  is the norm of f measured in the Hilbert space associated to the kernel function k, and 

λ>0 is the user-provided regularization hyper-parameter used to determine a compromise between 

the prediction error on the training set and the model complexity. Due to the well-known 

representer theorem (Kimeldorf and Wahba, 1971), a minimizer of the above objective function can 

be expressed as 
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where k is the above mentioned kernel that can be considered as a symmetric similarity measure 

between two data points. The parameters ai that define the minimizer can, in turn, be found via 

solving the following system of linear equations: 

  K I a y , 
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where a and y are both m-dimensional vectors consisting of the parameters ai and labels yi, 

respectively, K is a m×m matrix containing all pairwise evaluations of k for the training data, and I 

is the m×m identity matrix. 

 

KronRLS is a special case of the ordinary RLS in which one assumes the training data to have a 

special structure. Namely, one assumes that each datum consists of two distinct parts, which in this 

paper refer to a drug and a target. The real-valued label of the drug-target pair indicates the 

interaction affinity between a drug and its potential cellular target. We further assume that both the 

drugs and targets have their own kernel functions, kd and kt, and that the kernel for the composite 

data is the product of the two kernels, that is, the kernel evaluation between the data points 

x1=(d1,t1) and x2=(d2,t2) is given as k(x1, x2) = kd(d1,d2) kt(t1,t2). This particular choice of a composite 

kernel function has certain benefits. In Waegeman et al. (2012), we have proven that if the kernel 

functions kd and kt are universal, then the Kronecker product kernel k is also universal. The 

universality of a kernel (Steinwart, 2001) over a space of inputs Ξ indicates that the weighed linear 

combinations of type (1) can approximate any continuous real-valued function over Ξ arbitrarily 

closely provided that we are given a large and representative enough training set, that is, for any 

continuous function       , there exists a finite set of data points and their coefficients ai, such 

that the function f converges to f
*
 uniformly over Ξ. In contrast, if one used an alternative type of a 

composite kernel, say, the sum of kd and kt instead of their product, we would be unable to learn 

certain functions nonlinear in the two inputs, as we will discuss below in more detail. 

 

In the present application, the training set for KronRLS consists of a set X of drug-target pairs and a 

vector y consisting of their real-valued labels (quantitative interaction affinities). Let D and T 

denote, respectively, the sets of drugs and targets encountered in the training set, that is, a drug d 

belongs to D if and only if X contains at least one drug-target pair xi=(di,ti) for which d=di, and the 

set T goes analogously. For simplicity, we assume that X can only contain a single instance of each 

drug-target pair, and thus X D T  . Moreover, let Kd and Kt denote, respectively, the kernel 

matrices consisting of all kernel evaluations between the drugs and targets encountered in the 

training set. The Kronecker product of the two kernel matrices, namely d t K K K  then contains 

all kernel evaluations between the drug-target pairs in D T . 

 

Let us assume first that the training set X D T  contains every possible pair of drugs and targets 

encountered in the training set. To train a model we have to solve a system of D T  linear 
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equations, which is often computationally cumbersome. However, using Kronecker algebraic 

optimization, the model can be equivalently obtained from the following closed form. Let 

T

d K VΛV  be the eigen-decomposition of the kernel matrix Kd, with V being an orthogonal 

matrix consisting the eigenvectors and Λ a diagonal matrix containing the eigenvalues of Kd, and let 

T

t K UΣU  be the corresponding eigen decomposition of Kt. Then, the vector a of model 

parameters can be obtained from: 

vec( )Ta UCV  

where vec is the so-called vectorization operator that stacks the columns of a matrix into a vector, C 

is a matrix for which it holds that 

  1vec ( ) vec( )T T   C Λ Σ I U Y V , 

and    | | | | is the label matrix, whose rows and columns are indexed by drugs and targets, 

respectively. This form completely avoids the computation of the large Kronecker product matrix, 

which considerably accelerates the training process. This type of computational short-cuts have a 

long history in matrix analysis (see e.g. Van Loan, 2000). 

 

If we do not know the labels of every drug-target pair in D T , the above Kronecker algebraic 

short-cut does not work as such. Instead, one has to resort to alternative approaches for solving the 

corresponding system of linear equations, such as conjugate gradient combined with Kronecker 

algebraic optimization (see e.g. Kashima et al., 2009; Pahikkala et al., 2010, 2013). Some authors 

have also used dummy label values in place of the missing ones so that the use of closed form 

approach has subsequently been possible. This was done, for example, by Van Laarhoven et al. 

(2012) in cross-validation experiments, where the binary class labels of the data in the set held out 

for testing were replaced with zero values indicating no interaction and the learning process was 

repeated from scratch for the modified label matrix. Here, we again resort to matrix algebraic 

optimization approaches for cross-validation, similar to those introduced by some of the present 

authors (Pahikkala et al., 2012), and “unlearn” some of the data from the model. 

 

Evaluation procedure 

The results in the Yamanishi et al. (2008) data sets are based on a binary classification formulation, 

where true drug-target interactions belong to the positive and non-interactions to the negative class. 

In contrast, Davis et al. (2011) and Metz et al. (2011) data have quantitative labels (Kd and Ki 

values, respectively). We performed on quantitative data sets both regression experiments, where 
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the aim is to predict the ranks of the quantitative values, as well as binary classification 

experiments, where the data are first divided into an interacting and non-interacting classes based 

on a cutoff value. In the regression experiments, we evaluated the rank prediction performance 

using the concordance index (CI), whereas the binary classification experiments are based both on 

the area under ROC curve (AUC) and area under precision-recall curve (AUC-PR) results.  

 

With cross-validation (CV), we refer to the family of methods in which one repeatedly draws from 

the whole data mutually disjoint training and test sets and the prediction performances of the 

models trained with the training sets are evaluated on the corresponding test sets. There are two 

ways to compute CV performance for multivariate performance measures such as CI, AUC and 

AUC-PR: (1) pooling, where the performance is computed globally over the union of all the test 

sets, and (2) averaging, where performance is computed for every test set separately, with result 

being the average of these (Bradley et al. 1997; Airola et al. 2011). In our main experiments 

reported in the paper, we follow the averaging approach, since pooling has previously been shown 

sometimes to lead to systematically biased results, especially when used with the AUC performance 

measure (Parker et al., 2007; Airola et al., 2011). 

 

Supplementary Tables 1-17 report the full experimental results for the Davis et al. (2011),  

Yamanishi et al. (2008) and the Metz et al. (2011) datasets, using both averaging and pooling 

approaches, as well as in terms of CI, AUC and AUC-PR performance measures. 

 

Random forest 

We further performed experiments with the random forests method (Breiman, 2001). Specifically, 

we tested whether the main differences observed with Kronecker RLS across the four settings, as 

well as between the binary classification and rank prediction formulations generalized also to this 

machine learning method. Random forests have been previously applied to drug-target prediction 

by Yu et al. (2012); here, we used the same feature representation in which each drug-target pair is 

represented as a concatenation of drug- and target similarity vectors formed using the structural 

similarities and normalized Smith-Waterman sequence similarities, respectively. We made use of 

the Python implementation in the sklearn machine learning package (http://scikit-learn.org/). The 

binary classification AUC results are based on class probabilities output by the random forest 

classifier, while the concordance index results are obtained by training random forest regression 

models. In the evaluation, we applied nested 5-fold CV in the settings 1-3, and nested 3×3 CV in 

the setting 4. The inner cross-validation was used to select the number of trees; other parameters 
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were set to their default values, for instance, the number of features to consider when looking for 

the best split: square root of the number of features (classification), number of features (regression); 

split criterion: Gini impurity (classification), mean squared error (regression); for details, see 

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html; 

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html.  

 

Supplementary Tables 2, 4,6 and 11,13,15 contain the full random forest results in two technical 

replicates to investigate the level of variation in the perdition accuracies between the runs. 

 

 

References 

Airola, A. et al. (2011) An experimental comparison of cross-validation techniques for estimating 

the area under the ROC curve. Comput  Stat Data Analysis 55, 1828–1844. 

Bradley, A.P. (1997) The use of the area under the ROC curve in the evaluation of machine learning 

algorithms. Pattern Recognition 30, 1145–1159. 

Breiman, L. (2001) Random Forests. Machine Learning 45, 5–32. 

Davis, M.I. et al. (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol., 

29, 1046–1051. 

Gönen, M. and Heller, G. (2005) Concordance probability and discriminatory power in proportional 

hazards regression. Biometrika, 92, 965-970.  

Herbrich, R. et al. (2000) Large Margin Rank Boundaries for Ordinal Regression. In: Advances in 

Large Margin Classifiers, Cambridge, MA, MIT Press, 115-132  

Kashima, H. et al. (2009) Link propagation: A fast semi-supervised learning algorithm for link 

prediction. In: Proceedings of the SIAM International Conference on Data Mining, SIAM, 

1099-1110.  

Kimeldorf, G. and Wahba, G. (1971) Some results on Tchebycheffian spline functions. Journal of 

Mathematical Analysis and Applications, 33, 82-95.  

Metz, JT. et al. (2011) Navigating the kinome. Nat. Chem. Biol. 2011, 7, 200-202. 

Pahikkala, T. et al. (2010) Conditional ranking on relational data. In: Balcazar et al. editors, 

Proceedings of the European Conference on Machine Learning and Knowledge Discovery in 

Databases, Part II, Springer, Lecture Notes in Computer Science, 6322, 499-514. 

Pahikkala, T. et al. (2012) Efficient cross-validation for kernelized least-squares regression with 

sparse basis expansions. Machine Learning, 87, 381-407. 



6 

 

Pahikkala, T.et al. (2013) Efficient regularized least-squares algorithms for conditional ranking on 

relational data. Machine Learning, 93, 321-356. 

Parker BJ, Günter S, Bedo J. (2007) Stratification bias in low signal microarray studies. BMC 

Bioinformatics, 8, 326. 

Poggio, T. and Smale, S. (2003) The mathematics of learning: dealing with data. Notices of the 

American Mathematical Society, 50, 536-544. 

Saunders, C. et al. (1998) Ridge regression learning algorithm in dual variables. In: Shavlik, J. 

editor, Proceedings of the 15th International Conference on Machine Learning, Morgan 

Kaufmann Publishers Inc., 515-521.  

Steinwart. I. (2002) On the influence of the kernel on the consi stency of support vector machines. 

Journal of Machine Learning Research, 2, 67-93.  

Suykens J. et al. (2002) Least Squares Support Vector Machines. World Scientific Pub. Co., 

Singapore.  

Van Laarhoven, T. et al. (2011) Gaussian interaction profile kernels for predicting drug-target 

interaction. Bioinformatics, 27, 3036-3043.  

Van Loan, C. (2000) The ubiquitous kronecker product. Journal of Computational and Applied 

Mathematics, 123, 85-100.  

Waegeman, W. et al. (2012) A kernel-based framework for learning graded relations from data. 

IEEE Transactions on Fuzzy Systems, 20, 1090-1101. 

Yamanishi,Y. et al. (2008). Prediction of drug–target interaction networks from the integration of 

chemical and genomic spaces. Bioinformatics, 24, i232–i240. 

Yu H. et al. (2012). A systematic prediction of multiple drug-target interactions from chemical, 

genomic, and pharmacological data. PLoS ONE, 7, e37608. 


